Si chiamano ‘copy number variants’ (Cnvs) fanno parte del DNA e le loro anomalie sono coinvolte in moltissime patologie come tumori, malattie neurodegenerative, dello sviluppo e cardiovascolari. Una nuova ricerca condotta da Cnr di Pisa e dall’Università di Firenze ha sviluppato un algoritmo capace di identificare le regioni del DNA che hanno queste anomalie, il suo nome è Excavator 2. Lo studio è stato recentemente pubblicato sulla rivista scientifica internazionale Nucleic Acids Research

L’algoritmo è stato sviluppato da un team di ricercatori dell’Istituto di informatica e telematica dell’Area della ricerca di Pisa del Consiglio nazionale delle ricerche (Romina D’Aurizio e Marco Pellegrini) e del Dipartimento di medicina sperimentale e clinica dell’Università degli Studi di Firenze (Alberto Magi e Betti Giusti).

Il nuovo metodo sfrutta i dati prodotti da tecnologie di sequenziamento di seconda generazione (‘Next-Generation Sequencing’, Ngs) con un approccio totalmente innovativo. “L’idea alla base del nostro algoritmo è stata quella di includere nell’analisi i dati che fino ad oggi erano considerati sequenze-spazzatura”, spiega Alberto Magi. “Queste sequenze, opportunamente elaborate, ci danno la possibilità di valutare la presenza di anomalie cromosomiche sull’intero genoma sequenziandone solo l’1% (esoma) con una notevole riduzione dei costi sperimentali”.
“L’algoritmo Excavator2”, precisa Romina D’Aurizio, “è stato usato per rianalizzare i dati di sequenziamento di popolazione (Progetto 1000 Genomi) e di tumori (prodotti dal Cnio di Madrid) ottenendo risultati sorprendenti con prestazioni nettamente superiori a tutti gli altri metodi attualmente disponibili”.
La capacità di analisi del nuovo software apre a nuove collaborazioni nazionali e internazionali, quali ad esempio, ‘Alleanza Contro il Cancro‘ attiva negli screening di pazienti oncologici, e il ‘The Qatar Genomes Project’, il più grande progetto di sequenziamento al mondo che prevede la caratterizzazione di più di 350,000 individui.

(Fonte: CNR Roma)